Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Open sidebar
Chittaranjan S Swaminathan
RIS_IPW_2016
Commits
2e4c5557
Commit
2e4c5557
authored
8 years ago
by
WeiWei Feng
Browse files
Options
Download
Email Patches
Plain Diff
add the analysis script
parent
ee53833b
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
303 additions
and
5 deletions
+303
-5
ipw_stack/matlab/analysis.m
ipw_stack/matlab/analysis.m
+300
-0
ipw_stack/matlab/main.m
ipw_stack/matlab/main.m
+2
-4
ipw_stack/matlab/randomField.m
ipw_stack/matlab/randomField.m
+1
-1
No files found.
ipw_stack/matlab/analysis.m
0 → 100644
View file @
2e4c5557
%% Report-- obstacle effect --finished
clear
all
;
occupancy_map
=
zeros
(
20
,
30
);
occupancy_map
(
1
:
9
,
10
)
=
1
;
occupancy_map
(
9
,
15
:
30
)
=
1
;
occupancy_map
(
1
:
20
,
1
)
=
1
;
occupancy_map
(
1
,
1
:
30
)
=
1
;
occupancy_map
(
1
:
20
,
30
)
=
1
;
occupancy_map
(
20
,
1
:
30
)
=
1
;
occupancy_map
(
15
:
16
,
6
:
7
)
=
1
;
mean_map
=
zeros
(
20
,
30
);
parameters
.
neighbour_sigma
=
0.1
;
parameters
.
sensor_sigma
=
0.1
;
parameters
.
time_sigma
=
0.1
;
parameters
.
error_tolerance
=
0.00001
;
variance_map
=
zeros
(
20
*
30
,
20
*
30
);
parameters
.
occupancyThreshold
=
0.5
;
reading
=
[
33
32
];
position
=
[
3
3
;
15
20
];
[
mean_map_o
,
variance_map_o
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
figure
;
subplot
(
2
,
2
,
1
);
K1
=
mat2gray
(
mean_map_o
)
-
occupancy_map
;
imshow
(
K1
,
'InitialMagnification'
,
1000
);
title
(
'Mean map with obstacle'
)
subplot
(
2
,
2
,
3
)
var
=
diag
(
variance_map_o
);
a
=
max
(
var
(
var
<
1
))
var
(
var
>
1
)
=
a
;
K2
=
mat2gray
(
vec2mat
(
var
,
30
))
-
occupancy_map
;
imshow
(
K2
,
'InitialMagnification'
,
1000
);
title
(
'Variance with obstacle'
)
mean_map
=
zeros
(
20
,
30
);
parameters
.
neighbour_sigma
=
0.1
;
parameters
.
sensor_sigma
=
0.1
;
parameters
.
time_sigma
=
0.1
;
parameters
.
error_tolerance
=
0.00001
;
variance_map
=
zeros
(
20
*
30
,
20
*
30
);
parameters
.
occupancyThreshold
=
2
;
occupancy_map
=
zeros
(
20
,
30
);
occupancy_map
(
1
:
20
,
1
)
=
1
;
occupancy_map
(
1
,
1
:
30
)
=
1
;
occupancy_map
(
1
:
20
,
30
)
=
1
;
occupancy_map
(
20
,
1
:
30
)
=
1
;
[
mean_map_n
,
variance_map_n
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
2
);
K3
=
mat2gray
(
mean_map_n
)
-
occupancy_map
;
mean2
=
imshow
(
K3
,
'InitialMagnification'
,
1000
);
title
(
'mean map without obstacle'
)
subplot
(
2
,
2
,
4
)
K4
=
mat2gray
(
vec2mat
(
diag
(
variance_map_n
),
30
))
-
occupancy_map
;
imshow
(
K4
,
'InitialMagnification'
,
1000
);
title
(
'Variance without obstacle'
)
%% Report: time analysis--finished--mean_map
clear
all
;
mean_map
=
zeros
(
20
,
30
);
parameters
.
neighbour_sigma
=
0.08
;
parameters
.
sensor_sigma
=
0.1
;
parameters
.
time_sigma
=
0.1
;
parameters
.
error_tolerance
=
0.00001
;
variance_map
=
zeros
(
20
*
30
,
20
*
30
);
parameters
.
occupancyThreshold
=
2
;
occupancy_map
=
zeros
(
20
,
30
);
occupancy_map
(
1
:
20
,
1
)
=
1
;
occupancy_map
(
1
,
1
:
30
)
=
1
;
occupancy_map
(
1
:
20
,
30
)
=
1
;
occupancy_map
(
20
,
1
:
30
)
=
1
;
reading
=
[
30
35
35
];
position
=
[
3
20
;
10
10
;
15
20
];
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
figure
subplot
(
2
,
2
,
1
);
K
=
mat2gray
(
mean_map
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'mean map t1'
)
reading
=
[
30
35
];
position
=
[
3
20
;
15
20
];
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
2
);
K
=
mat2gray
(
mean_map
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'mean map t2'
)
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
3
);
K
=
mat2gray
(
mean_map
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'mean map t3'
)
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
4
);
K
=
mat2gray
(
mean_map
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'mean map t4'
)
%% Report: time analysis--finished--variance_map
clear
all
;
mean_map
=
zeros
(
20
,
30
);
parameters
.
neighbour_sigma
=
0.08
;
parameters
.
sensor_sigma
=
0.1
;
parameters
.
time_sigma
=
0.1
;
parameters
.
error_tolerance
=
0.00001
;
variance_map
=
zeros
(
20
*
30
,
20
*
30
);
parameters
.
occupancyThreshold
=
2
;
occupancy_map
=
zeros
(
20
,
30
);
occupancy_map
(
1
:
20
,
1
)
=
1
;
occupancy_map
(
1
,
1
:
30
)
=
1
;
occupancy_map
(
1
:
20
,
30
)
=
1
;
occupancy_map
(
20
,
1
:
30
)
=
1
;
reading
=
[
30
35
35
];
position
=
[
3
20
;
10
10
;
15
20
];
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
figure
subplot
(
2
,
2
,
1
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map
),
30
))
-
occupancy_map
;
%K=mat2gray(variance_map)-occupancy_map;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map t1'
)
reading
=
[
30
35
];
position
=
[
3
20
;
15
20
];
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
2
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map
),
30
))
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map t2'
)
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
3
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map
),
30
))
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map t3'
)
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
4
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map
),
30
))
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map t4'
)
%% Report--different time variance-variance_map
clear
all
;
mean_map
=
zeros
(
20
,
30
);
parameters
.
neighbour_sigma
=
0.1
;
parameters
.
sensor_sigma
=
0.1
;
parameters
.
time_sigma
=
0.1
;
parameters
.
error_tolerance
=
0.00001
;
variance_map
=
zeros
(
20
*
30
,
20
*
30
);
parameters
.
occupancyThreshold
=
2
;
occupancy_map
=
zeros
(
20
,
30
);
occupancy_map
(
1
:
20
,
1
)
=
1
;
occupancy_map
(
1
,
1
:
30
)
=
1
;
occupancy_map
(
1
:
20
,
30
)
=
1
;
occupancy_map
(
20
,
1
:
30
)
=
1
;
reading
=
[
30
35
35
];
position
=
[
3
20
;
10
10
;
15
20
];
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
figure
subplot
(
2
,
2
,
1
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map
),
30
))
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map Original'
)
reading
=
[
30
35
];
position
=
[
3
20
;
15
20
];
parameters
.
time_sigma
=
1
;
[
mean_map_1
,
variance_map_1
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
4
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map_1
),
30
))
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map (1)'
)
parameters
.
time_sigma
=
0.1
;
[
mean_map_1
,
variance_map_1
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
3
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map_1
),
30
))
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map (0.1)'
)
parameters
.
time_sigma
=
0.01
;
[
mean_map_1
,
variance_map_1
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
2
);
K
=
mat2gray
(
vec2mat
(
diag
(
variance_map_1
),
30
))
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Variance map (0.01)'
)
%% Report--different time variance-mean map
clear
all
;
mean_map
=
zeros
(
20
,
30
);
parameters
.
neighbour_sigma
=
0.1
;
parameters
.
sensor_sigma
=
0.1
;
parameters
.
time_sigma
=
0.01
;
parameters
.
error_tolerance
=
0.00001
;
variance_map
=
zeros
(
20
*
30
,
20
*
30
);
parameters
.
occupancyThreshold
=
2
;
occupancy_map
=
zeros
(
20
,
30
);
occupancy_map
(
1
:
20
,
1
)
=
1
;
occupancy_map
(
1
,
1
:
30
)
=
1
;
occupancy_map
(
1
:
20
,
30
)
=
1
;
occupancy_map
(
20
,
1
:
30
)
=
1
;
reading
=
[
30
35
35
];
position
=
[
3
20
;
10
10
;
15
20
];
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
figure
subplot
(
2
,
2
,
1
);
K
=
mat2gray
(
mean_map
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Mean map Original'
)
reading
=
[
30
35
];
position
=
[
3
20
;
15
20
];
parameters
.
time_sigma
=
1
;
[
mean_map_1
,
variance_map_1
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
4
);
K
=
mat2gray
(
mean_map_1
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Mean map (1)'
)
parameters
.
time_sigma
=
0.1
;
[
mean_map_1
,
variance_map_1
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
3
);
K
=
mat2gray
(
mean_map_1
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Mean map (0.1)'
)
parameters
.
time_sigma
=
0.01
;
[
mean_map_1
,
variance_map_1
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
subplot
(
2
,
2
,
2
);
K
=
mat2gray
(
mean_map_1
)
-
occupancy_map
;
imshow
(
K
,
'InitialMagnification'
,
1000
);
title
(
'Mean map (0.01)'
)
%%
\ No newline at end of file
This diff is collapsed.
Click to expand it.
ipw_stack/matlab/main.m
View file @
2e4c5557
...
...
@@ -125,15 +125,12 @@ position=[5 1];
%reading=[33 30];
%position=[5 1; 2 8];
%%
reading
=
30
;
position
=
[
2
8
];
[
mean_map
,
variance_map
]
=
randomField
(
mean_map
,
reading
,
position
,
parameters
,
variance_map
,
occupancy_map
);
%%
dlmwrite
(
'mean1.csv'
,
mean_map
,
'precision'
,
9
)
dlmwrite
(
'variance1.csv'
,
variance_map
,
'precision'
,
9
)
...
...
@@ -192,5 +189,6 @@ variance_map=reshape(variance_vector,6,4)';
parameters
.
occupancyThreshold
=
2
;
position
=
[
2
5
];
goal
=
exploreMaxVariance
(
variance_matrix
,
1
,
position
,
parameters
,
occupancy_map
)
goal
=
exploreMaxVariance
(
variance_matrix
,
1
,
position
,
parameters
,
occupancy_map
);
This diff is collapsed.
Click to expand it.
ipw_stack/matlab/randomField.m
View file @
2e4c5557
...
...
@@ -5,7 +5,7 @@ num_cells=numel(mean_map);
length_reading
=
length
(
reading
);
% probability for obstacle or not obstacle
p_n_o
=
0.
0
01
;
p_n_o
=
0.01
;
p_o
=
1
-
p_n_o
;
%if length_reading==1
...
...
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment